The impact of environmental stresses on the survivability of trees in the urban landscape

> Jason Lemay Amy Lemay

1.0 Summary of findings

- 11 Key factors
- Don't ignore a healthy root:shoot ratio
- The importance of provenance in species selection
- Most research doesn't actually happen in an urban setting
- The importance of research in hardiness zones
 2-5

Key findings	
Species selection	
Transplanting method	
Site selection and preparation	
Soil compaction	
Moisture stress	
Mulching	
Salt and de-icing products	
Root damage	
Light	
Temperature	
Post-planting management	

2.0 Species selection

Provenance and ecotypes

Provenance and ecotypes

"Tough trees for tough situations"

- Source seeds from less than optimal environments when possible
 - Near the limit of a species geographic range
 - Stress prone areas i.e. floodplains
- Be aware of out of country stock
 - Red maple can be grown from hardiness zone 3-11 (Florida to Ontario)

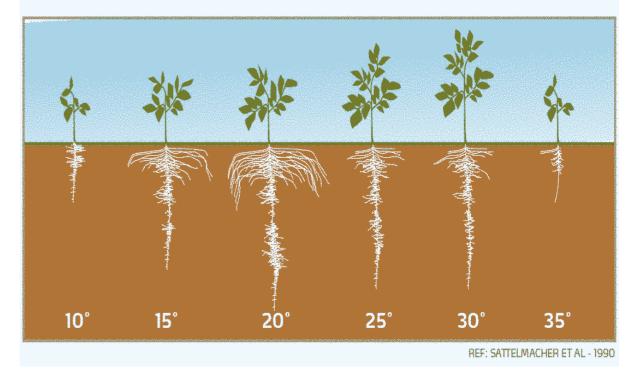
Photo credit: Nature

3.0 Transplanting

Transplant shock Transplanting date Transplanting depth Production method Soil amendments

Transplanting shock

- "A temporary condition of distress resulting from injuries, depletion, and impaired function"
- Solution 1: Harden off nursery stock
- Solution 2: Pre-conditioning in the nursery


Photo credit: Chase Mendenhall

Transplanting date

- Spring/Fall transplants are popular
 - Less transpirational demand
- Soil temperatures influence root regeneration
 - Leave time for root regeneration before cold weather

Effects of Soil Temperature on Root Development

Transplanting depth

- Root collar above or below grade?
 - Interaction with girdling roots and poor drainage

- Stability trade-off?
 - Not always

Photo chedit: University of Florida

Production method

Container Production

- Small root ball volume
 - No root damage but can still result in moisture stress
- Containers for deflected roots

Field Production

- Small trees retain a greater % of root ball when dug
- Retaining wire basket at transplant = greater stability

Transplant amendments

- Urban soils aren't the greatest
 - Soil quality is not usually considered in planting contracts
- Mycorrhyzae ectofungus
 - Quicker root regeneration (Nitrogen uptake)
 - Less moisture stress
- Bare root hydrogel dip
- Sucrose >25g/L injections
 - Stimulates fine root growth

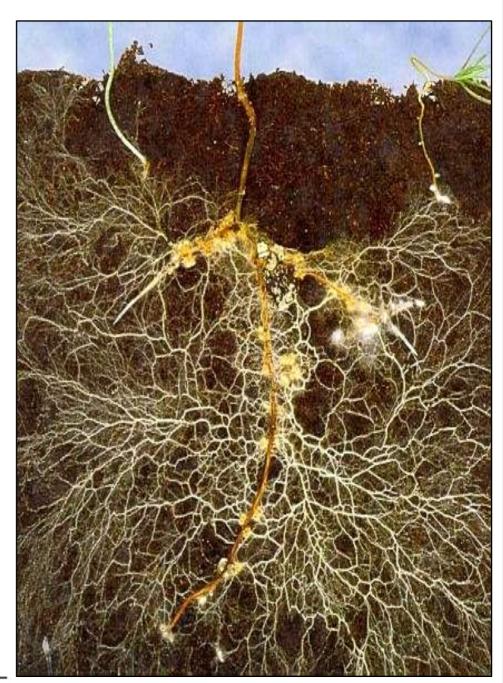
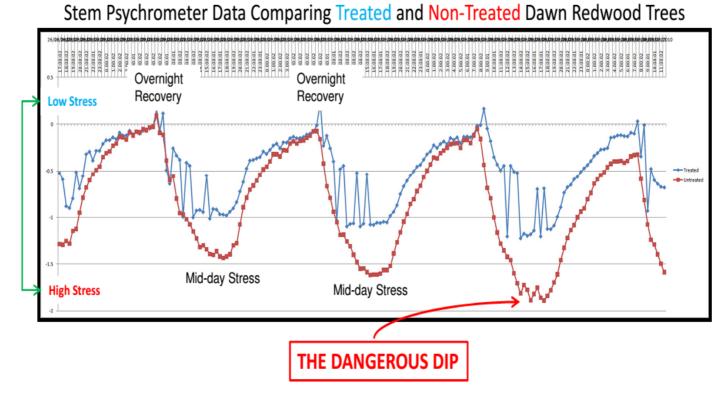


Photo credit: Alberton, O., Kuyper, T (2009)

Transplant amendments

Science & Technology

Putting Research Into Action


IA

Graphing Water Stress - 24/7 -University of Guelph Data

3

Four Days Without Rain – The Root Rescue Advantage Revealed

- Blue Trees (treated) = Root Rescue inoculated
- Red Trees (control or untreated) = fending for themselves

4.0 Site preparation

Root zone misconceptions

Soil volume

Structural soils

Soil amendments

VISTA Science & Technology Putting Research Into Action

Root Zone Misconceptions

- 1. Most trees <u>do not penetrate deeply into the ground</u> and 1m of soil depth is sufficient.
- **2.** <u>Roots tend to grow laterally</u> rather than vertically, and can spread more than 3 times the diameter of the crown.
- 3. It is the **fine roots that supply the majority of the water** uptake and not the larger roots.

Soil volume

Trees need adequate space **both above and below** ground

- Minimum of 28m³ quality soil volume is needed
- 80% of all urban tree problems stem from poor soils

Structural soil

Benefits	Compromises
Retain structural and load bearing support	Minimal amount of quality growing soil (~20%)
Increase soil pore size	Water/nutrient limited
Increase rooting space in dense urban areas	Costly

Soil amendments

• Fertility

- Increase nutrient availability
- Promote root growth
 - Root:Shoot ratio?
- Organic matter
 - Increase drainage
 - Decrease compaction
 - Especially important in clay soils

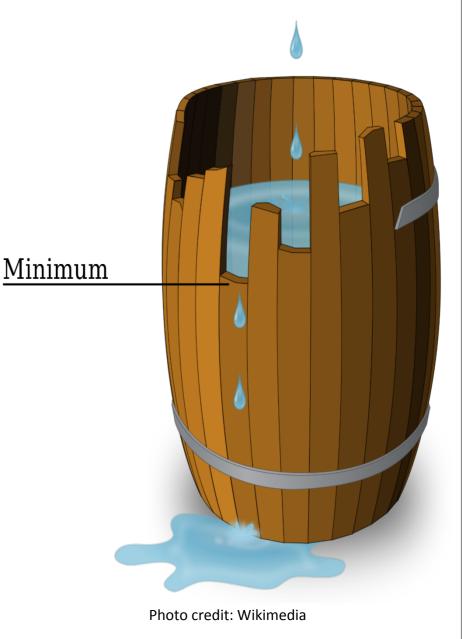


Photo credit: Jason Henry and Darby McGrath (2016).

Soil Amendments

- Fertilization isn't always necessary/ beneficial
 - Limiting factor?
 - 11 species showed no response to different nitrogen levels (up to 2x rate!)
- Ensure GOOD soil conditions before wasting fertilizer
- No evidence that commercial backfill amendments actually work

5.0 Soil Compaction

Soil Compaction

- Think about the soil outside the tree pit
 - Atleast 12m³ of uncompacted soil in the tree pit
- <1.5g/cm³

6.0 Moisture stress

Drought Flooding

Drought

- What can cause low infiltration?
 - Soil compaction
 - Small surface area
- High root:shoot ratio is a drought tolerance mechanism
- Conditioning trees
 - Mycorrhyzae/Hydrogel dips

Flooding

- Decreases soil oxygen levels
- Most methods to deal with soil compaction also work with flooding
 - Make sure the water can drain away
- Deciduous trees are more tolerant that conifers



Photo credit: The Weather Network

Photo credit: Dave Buston /AFP/Getty Images

7.0 Mulching

Mulching

- Research is split
 - Florida = negative results
 - Illinois = positive results
 - For coarse mulches
- What about Hardiness zone 2-5?
- Decreased water infiltration
- Decrease weed competition
 - Keeping the area weed free was shown to be better than mulching
 - Roots remediation? Don't mulch

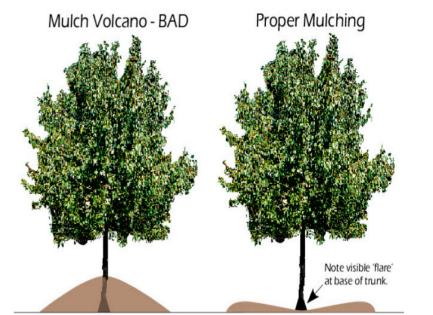
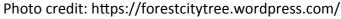



Photo credit: http://www.harvestpower.com/how-to-mulch-around-trees/

8.0 Salt and de-icing products

Preventative measures

Reparative measures

Preventative measures

- It's not going away anytime soon
- Soil concentration vs foliar deposition
 - Tolerance to one ≠ tolerance to the other
 - Species selection based on which form of salt contact is more likely
- Site preparation
 - Lips
 - Buffer zones
 - Good drainage

Reparative measures

- Gypsum application to the soil
 - 20-40lbs/100ft²
 - No effect of pH
- Wash the tree and flush the soil
 - Attempt to remove the salt
 - Ensure good drainage
- Site remediation
 - High salt = greater soil compaction

Photo credit: University of Massachusetts Amherst

9.0 Root damage

Root zone misconceptions

Root Zone Misconceptions - Refresher

- 1. Most trees do not penetrate deeply into the ground and 1m of soil depth is sufficient.
- 2. Roots tend to grow laterally rather than vertically, and can spread more than three times the diameter of the crown.
- 3. It is the fine roots that supply the majority of the water uptake and not the larger roots.

Trenching

- Think about where the roots are
 - Visual appearance isn't good enough
 - Roots grow straight for ~0.5m then deflect
- Fertilize and irrigate prior to root zone excavation

Photo credit: Trees Unlimited LLC

VISTA Science & Technology

Putting Research Into Action

Photo credit: Preservation Tree Services

10.0 Light

Effects of light

- Goal of >80% total light for optimal growth
- Avoid street lights when possible
 - Retain leaves longer = later dormancy
 - Increased chance of root disturbance

Photo credit: Florida Atlantic University

11.0 Temperature

Temperature effect

- Soil under pavement can be >34°C
 - Unpaved soils can be 10°C cooler
- Sunscald
 - Highest risk first winter after transplant

Photo credit: Robert Cox

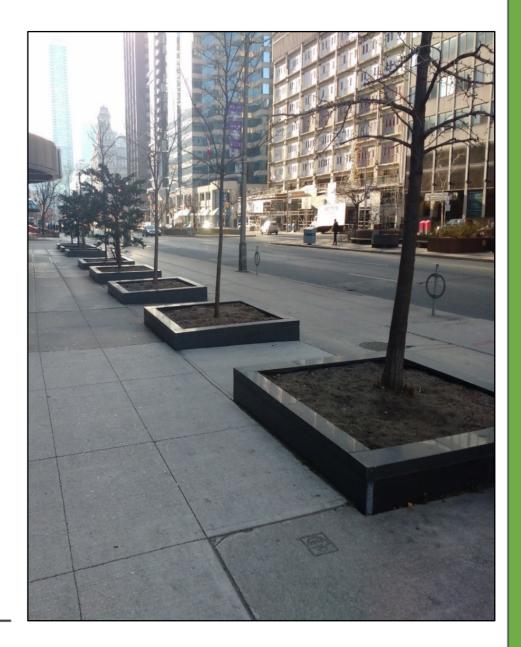
12.0 Post planting management

Determining a tree's needs What can you do? Imaging technology

Determining a trees need?

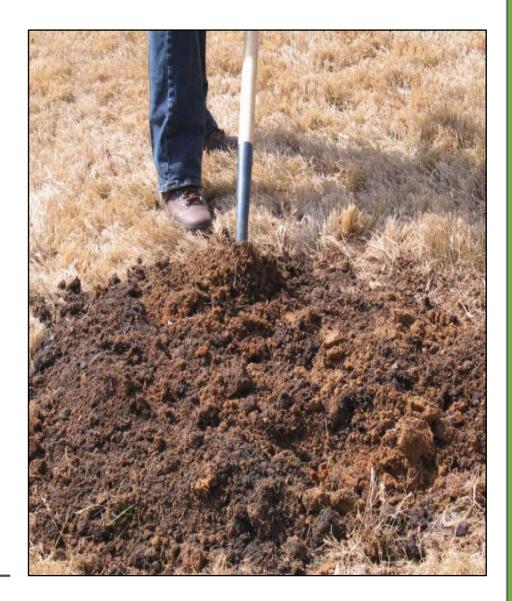
Visual assessment

- Any good indicators?
 - Levinsson et al., 2015 (red oak)
 - Not a good tool for water stress
- Nutrient stress is much more visible


Technical tools

- Starch content
- Cambial electrical resistance
- Bark chlorophyll fluorescence
- Soil sampling
- Expensive and technical skills needed

Determining a trees needs - Irrigation


- Irrigation IS necessary
 - Growth increase in a year when precipitation was 17% above the 30 year average
- Frequent small irrigation > Few large irrigation
- Infiltration and soil volume
 - How much water is getting to the root zones
 - How much water can these root zones hold

Determining a trees needs - Fertilization

- Research suggests fertilization isn't necessary
- Soil fertility is important
 - Urban soils are typically very poor
- Compost and other soil amendments
 - To improve physical and chemical soil characteristics

What can you do?

Irrigation

- Frequent smaller irrigations
- Soil moisture sensors
- USDA hand test

Fertilization

- Wait until twig growth
- Soil tests
- Use high quality soils

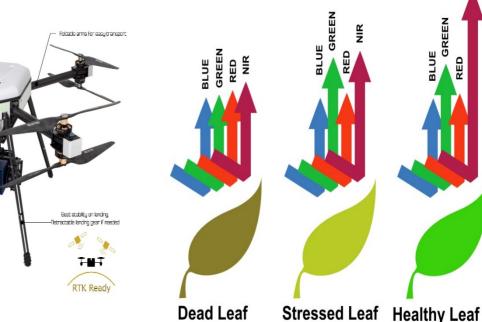
25-50 percent available 1.6-0.8 in./ft. depleted

Slightly moist, forms a weak ball with rough surfaces, no water staining on fingers, few aggregated soil grains break away.

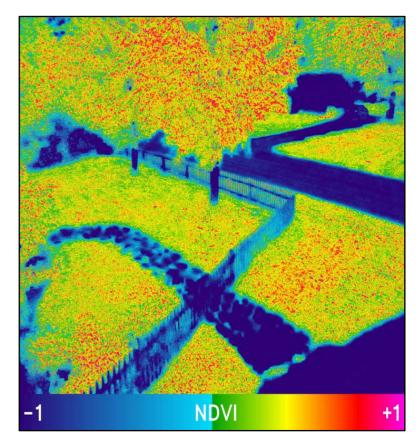
50-75 percent available 1.1-0.4 in./ft. depleted

Moist, forms a ball, very light staining on fingers, darkened color, pliable, forms a weak ribbon between the thumb and forefinger.

VISTA Science & Technology Putting Research Into Action


Imaging and drones

- Thermal imaging
 - Has been used in Forestry
- Vegetative index
 - Has been used in various agricultural crops (e.g. cotton, wheat)


Orientation leris, Breen on th

Selection: 4 or 8 motors. We can help you decide th

- Slight changes is chlorophyll/leaf colour
- This is new technology that can be looked at for urban landscapes

Dead Leaf Stressed Leaf Healthy Lea Photo credit: Agribotix

Drone picture from: <u>http://www.droning.es/de820-professional-multirotor/</u> NDVI picture from: <u>http://buch24.rssing.com/chan-12896425/all_p6.html</u>

13.0 Research priorities

Research priorities

- Environmental tolerances of tree species
 - Specifically common urban trees in our area
- Effect of mulching in our hardiness zones
- Soil amendments for healthy soil
- Drones and imaging technology

Conclusions

- Don't ignore a healthy root:shoot ratio
 - These trees aren't bonsais
- Research in an urban settings if possible
 - University campuses
- The importance of provenance in species selection
 - Ecotype/cultivars are important
- Prioritize research from hardiness zones
 2-5 when possible

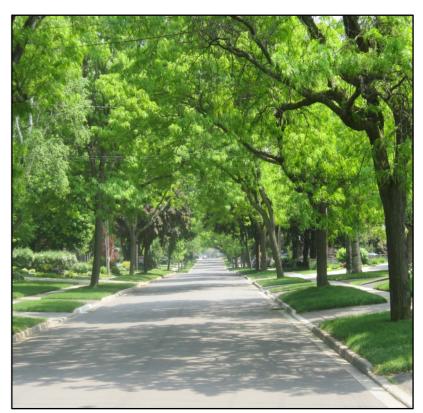


Photo credit: Burlington Gazette

Photo credit: Randy Oldham

Acknowledgements

- Dr. Mike Dixon at University of Guelph
- Bob Reeves of Root Rescue
- Jennifer Llewellyn at OMAFRA
- Landscape Ontario and Canadian Nursery and Landscape Association

Putting research into action

Science & Technology